半导体行业的巨变与宿命 AI引爆新一轮芯片军备竞赛-产业分析-自动化新闻-中国自动化网(ca800.com)
  • 官方微信

    CA800二维码微平台 大视野

  • 工控头条

    CA800二维码工控头条App

当前位置:自动化网>自动化新闻>产业分析>半导体行业的巨变与宿命 AI引爆新一轮芯片军备竞赛

半导体行业的巨变与宿命 AI引爆新一轮芯片军备竞赛

发布时间:2018-07-12 来源:网易智能 类型:产业分析 人浏览
关键字:

半导体 英特尔 RISC处理器

导  读:

多年来,半导体行业似乎已经达到了一种稳定的平衡:英特尔在服务器领域几乎击败了所有的RISC处理器,同时AMD也逐渐陷入低迷,使得英特尔的x86成为了主导者。

随着人工智能和机器学习的出现,芯片世界的巨大转变随之而来。


本文系网易智能工作室(公众号smartman 163)出品。聚焦AI,读懂下一个大时代!


【网易智能讯7月12日消息】目前在AI芯片市场上还没有x86,人们看到了淘金热,这是毫无疑问的。


多年来,半导体行业似乎已经达到了一种稳定的平衡:英特尔在服务器领域几乎击败了所有的RISC处理器,同时AMD也逐渐陷入低迷,使得英特尔的x86成为了主导者。而在GPU领域起步较晚的英伟达,在上世纪90年代就已经淘汰了大多数竞争对手。而突然之间,就只剩ATI(现已被AMD收购)仍然在市场上存在。它只占英伟达之前市场份额的一半。


在较新的移动领域,似乎也是类似的垄断故事:ARM统治着市场,英特尔曾用Atom处理器尝试与之竞争,但在遭遇多次失败后,在2015年最终选择了放弃。就这样,一切都与以往不同了,AMD重新成为了x86的竞争对手;针对大数据等专门任务的现场可编程门阵列(FPGA)的出现创造了一个新的利基市场。但实际上,随着人工智能(AI)和机器学习(ML)的出现,芯片世界的巨大转变也随之而来。随着这些新兴技术的出现,大量的新处理器已经到来。并且,它们都来自于不太可能的来源。


半导体行业的巨变与宿命 AI引爆新一轮芯片军备竞赛


英特尔在2016年收购了初创公司Nervana Systems,进入了AI芯片市场,随后它又收购了另一家公司Movidius,目的是开发图像处理AI;


半导体行业的巨变与宿命 AI引爆新一轮芯片军备竞赛


微软正在为其HoloLens VR/AR头戴设备开发人工智能芯片,而且有可能在其它设备中使用;


半导体行业的巨变与宿命 AI引爆新一轮芯片军备竞赛


谷歌针对神经网络开发了一种特殊的人工智能芯片——“张量处理单元(TPU)”,该处理器可用于谷歌云平台上的人工智能应用;


亚马逊正在为其Alexa家庭助理开发人工智能芯片;


苹果正在研发一款名为“神经引擎(Neural Engine)”的人工智能处理器,该处理器将为Siri和FaceID提供动力;


ARM公司最近推出了两款新处理器——ARM机器学习(ML)处理器和ARM物体检测(OD)处理器,这两者都专注于图像识别;


IBM正在开发专门的人工智能处理器,该公司还从英伟达那里获得了NVLink的授权,用于专门针对人工智能和机器学习的高速数据传输;


即使是特斯拉这样的非传统科技公司也想要进入这个领域,其首席执行官埃隆马斯克(Elon Musk)去年承认,前AMD和苹果芯片工程师Jim Keller将在特斯拉负责硬件制造,这些还没有将初创公司计算在内。《纽约时报》指出,据不完全统计,专注于人工智能的芯片创业公司(不是单纯的软件公司或芯片公司)已经达到了45家,并且仍在继续增长。


为什么在多年的芯片制造停滞之后,硬件突然出现了爆炸式的增长?毕竟,人们已经达成共识,英伟达的GPU对人工智能来讲非常优秀,而且已经被广泛使用,为什么我们现在需要更多的芯片,并且是更多不同的芯片?


答案有些复杂,就像人工智能本身一样。


投资导向和技术发展的影响


Intersect360 Research公司CEO Addison Snell说,尽管x86目前仍是计算领域的主流芯片架构,但对于像人工智能这样高度专业化的任务来说,它太普通了,该公司的主要业务是HPC(高性能计算)和人工智能。“人们希望AI成为一个通用的服务器平台,因此,它必须在所有事情上都做得很好”他说,“在其他芯片的基础上,各个公司正在开发专门针对某一应用的产品,而操作系统和基础设施的任务仍然留给x86来做。”


处理人工智能实际任务的过程与标准计算或GPU处理是非常不同的,因此需要专门针对人工智能的芯片,x86 CPU可以完成人工智能任务,而实际只需要3个步骤的任务,它在执行时需要经过12个步骤,在某些情况下,GPU也可能把任务变得过于繁杂。


一般而言,科学计算是以确定性的方式完成的,比如你想知道2加3等于5,并计算到所有小数部分——x86和GPU可以做得很好。但是人工智能的本质是,通过长期的观察得出2.5加3.5等于6,而不需要真正去计算,如今人工智能的关键是从数据中发现的模式,而不是确定性的计算。


从更简单的角度来说,人工智能和机器学习的定义是,它们利用过去的经验并加以改进。比如,著名的AlphaGo就通过模拟大量的围棋比赛改进技术。另一个我们熟悉的例子就是Facebook的面部识别AI,经过多年的训练,它可以精确地标记你的照片(Facebook最近几年进行了三次重大的面部识别收购:2012年收购Face.com、2016年收购Masquerade,2016收购Faciometrics)。


一旦用人工智能开展学习,就不需要重新学习了。这是机器学习的标志(人工智能更大定义的一个子集)。从本质上讲,机器学习(ML)是一种使用算法来解析数据、从中学习、然后根据这些数据做出判断或预测的实践。这是一种模式识别的机制——机器学习软件记住2加3等于5,所以整个人工智能系统可以使用这些信息。


淘金还是技术需要?人工智能催生芯片“军备竞赛”


再比如说,自动驾驶汽车的AI,并不是通过确定的事物来判断周围物体的活动路径,它通过以往的经验,表示曾经有一辆车,按照这样的方式行驶。因此,系统能够预测到特定类型的动态。


这种预测问题解决的结果是,人工智能计算可以通过单精度计算来完成。因此,虽然CPU和GPU都可以很好地完成,但实际上它们对任务来说是多余的。一个单精度芯片足以完成这项工作,并且能在更小、更低的功耗下完成。


毫无疑问,对于芯片来说,功耗和范围是一个大问题——也许对人工智能来说尤其如此,因为一个尺寸并不能适用于这一领域的所有情况。在人工智能中包含机器学习,机器学习